Integration of exoskeletons in the recovery of patients with motor disabilities: towards a new era in physiotherapy

Main Article Content

Díaz-Grefa, Wendy Paulina
Portilla-Paguay, Guadalupe Verónica
Ortiz-Cartagena, César Luis
Roman-Huera, Cinthya Katherinne

Abstract

This article examines the integration of exoskeletons in the rehabilitation of patients with motor disabilities, highlighting their potential to improve mobility, muscle strength and quality of life. Through a qualitative literature review methodology, recent studies, success stories and comparisons between different populations were analyzed to evaluate the efficacy of exoskeletons. The results indicate significant improvements in patient mobility and independence, although challenges in implementation were identified, such as the need for specialized training for healthcare professionals, customization of the device to the patient, and economic barriers. The discussion highlights the importance of integrating exoskeletons with conventional therapies and emerging technologies, such as virtual reality, to overcome these challenges and improve rehabilitation outcomes. The conclusions emphasize the efficacy of exoskeletons in motor disability rehabilitation and recommend the development of training programs, more adaptable exoskeletons, and innovative funding models to expand their accessibility. This study highlights the need for future research to optimize the use of exoskeletons in clinical practice and improve the quality of life of patients with motor disabilities.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Díaz-Grefa, W. P., Portilla-Paguay, G. V., Ortiz-Cartagena, C. L., & Roman-Huera, C. K. (2024). Integration of exoskeletons in the recovery of patients with motor disabilities: towards a new era in physiotherapy. Journal of Economic and Social Science Research, 4(1), 77-98. https://doi.org/10.55813/gaea/jessr/v4/n1/87

References

Aach, M., Cruciger, O., Sczesny-Kaiser, M., Höffken, O., Meindl, R. C., Tegenthoff, M., Schwenkreis, P., Sankai, Y., & Schildhauer, T. A. (2014). Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. The Spine Journal: Official Journal of the North American Spine Society, 14(12), 2847–2853. https://doi.org/10.1016/j.spinee.2014.03.042
Alcivar Soria, E. E. (2021). La influencia del liderazgo en el clima organizacional de los docentes universitarios: un estudio exploratorio. Journal of Economic and Social Science Research, 1(4). https://doi.org/10.55813/gaea/jessr/v1/n4/40
Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Journal of Neuroengineering and Rehabilitation, 12(1). https://doi.org/10.1186/s12984-015-0048-y
Bravo-Bravo, I. F., Cedeño-Aguilar, C. A., Santander-Salmon, E. S., & Barba-Mosquera, A. E. (2023). Capital Social y la Intención de Emprender. In Capital Social y la Intención de Emprender. https://doi.org/10.55813/egaea.l.2022.27
Buesing, C., Fisch, G., O’Donnell, M., Shahidi, I., Thomas, L., Mummidisetty, C. K., Williams, K. J., Takahashi, H., Rymer, W. Z., & Jayaraman, A. (2015). Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. Journal of Neuroengineering and Rehabilitation, 12(1). https://doi.org/10.1186/s12984-015-0062-0
Calabrò, R. S., Naro, A., Russo, M., Leo, A., De Luca, R., Balletta, T., Buda, A., La Rosa, G., Bramanti, A., & Bramanti, P. (2017). The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. Journal of Neuroengineering and Rehabilitation, 14(1). https://doi.org/10.1186/s12984-017-0268-4
Carlson, M., Vigen, C. L. P., Rubayi, S., Blanche, E. I., Blanchard, J., Atkins, M., Bates-Jensen, B., Garber, S. L., Pyatak, E. A., Diaz, J., Florindez, L. I., Hay, J. W., Mallinson, T., Unger, J. B., Azen, S. P., Scott, M., Cogan, A., & Clark, F. (2019). Lifestyle intervention for adults with spinal cord injury: Results of the USC–RLANRC Pressure Ulcer Prevention Study. The Journal of Spinal Cord Medicine, 42(1), 2–19. https://doi.org/10.1080/10790268.2017.1313931
Contreras-Vidal, J. L., A Bhagat, N., Brantley, J., Cruz-Garza, J. G., He, Y., Manley, Q., Nakagome, S., Nathan, K., Tan, S. H., Zhu, F., & Pons, J. L. (2016). Powered exoskeletons for bipedal locomotion after spinal cord injury. Journal of neural engineering, 13(3), 031001. https://doi.org/10.1088/1741-2560/13/3/031001
del-Ama, A. J., Koutsou, A. D., Moreno, J. C., de-los-Reyes, A., Gil-Agudo, N., & Pons, J. L. (2012). Review of hybrid exoskeletons to restore gait following spinal cord injury. Journal of Rehabilitation Research and Development, 49(4), 497. https://doi.org/10.1682/jrrd.2011.03.0043
Donati, A. R. C., Shokur, S., Morya, E., Campos, D. S. F., Moioli, R. C., Gitti, C. M., Augusto, P. B., Tripodi, S., Pires, C. G., Pereira, G. A., Brasil, F. L., Gallo, S., Lin, A. A., Takigami, A. K., Aratanha, M. A., Joshi, S., Bleuler, H., Cheng, G., Rudolph, A., & Nicolelis, M. A. L. (2016). Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Scientific Reports, 6(1). https://doi.org/10.1038/srep30383
Erazo-Luzuriaga, A. F., Ramos-Secaira, F. M., Galarza-Sánchez, P. C., & Boné-Andrade, M. F. (2023). La inteligencia artificial aplicada a la optimización de programas informáticos. Journal of Economic and Social Science Research, 3(1). https://doi.org/10.55813/gaea/jessr/v3/n1/61
Esquenazi, A., Talaty, M., & Jayaraman, A. (2017). Powered exoskeletons for walking assistance in persons with central nervous system injuries: A narrative review. PM & R: The Journal of Injury, Function, and Rehabilitation, 9(1), 46–62. https://doi.org/10.1016/j.pmrj.2016.07.534
Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation, 91(11), 911–921. https://doi.org/10.1097/phm.0b013e318269d9a3
Fournier, D. E., Yung, M., Somasundram, K. G., Du, B. B., Rezvani, S., & Yazdani, A. (2023). Quality, productivity, and economic implications of exoskeletons for occupational use: A systematic review. PloS One, 18(6), e0287742. https://doi.org/10.1371/journal.pone.0287742
Gassert, R., & Dietz, V. (2018). Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Journal of Neuroengineering and Rehabilitation, 15(1). https://doi.org/10.1186/s12984-018-0383-x
Gillespie, J., Arnold, D., Trammell, M., Bennett, M., Ochoa, C., Driver, S., Callender, L., Sikka, S., Dubiel, R., & Swank, C. (2023). Utilization of overground exoskeleton gait training during inpatient rehabilitation: a descriptive analysis. Journal of Neuroengineering and Rehabilitation, 20(1). https://doi.org/10.1186/s12984-023-01220-w
Guamán-Rivera, S. A., Herrera-Feijoo, R. J., Paredes-Peralta, A. V., Ruiz-Sánchez, C. I., Bonilla-Morejón, D. M., Samaniego-Quiguiri, D. P., Paredes-Fierro, E. J., Fernández-Vélez, C. V., Almeida-Blacio, J. H., & Rivadeneira-Moreira, J. C. (2023). Sinergia Científica: Integrando las Ciencias desde una Perspectiva Multidisciplinaria. In Sinergia Científica: Integrando las Ciencias desde una Perspectiva Multidisciplinaria. https://doi.org/10.55813/egaea.l.2022.33
Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., Etheridge, S., & Farris, R. (2015). Mobility outcomes following five training sessions with a powered exoskeleton. Topics in Spinal Cord Injury Rehabilitation, 21(2), 93–99. https://doi.org/10.1310/sci2102-93
Herr, H. (2009). Exoskeletons and orthoses: classification, design challenges and future directions. Journal of Neuroengineering and Rehabilitation, 6(1). https://doi.org/10.1186/1743-0003-6-21
Herr, H. M., & Grabowski, A. M. (2012). Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proceedings. Biological Sciences, 279(1728), 457–464. https://doi.org/10.1098/rspb.2011.1194
Herrera-Sánchez, P. J., & Mina-Villalta, G. Y. (2023). Riesgos de la mala higiene de los equipos quirúrgicos. Journal of Economic and Social Science Research, 3(1). https://doi.org/10.55813/gaea/jessr/v3/n1/63
Holden, M. K. (2005). Virtual environments for motor rehabilitation: Review. Cyberpsychology & Behavior: The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 8(3), 187–211. https://doi.org/10.1089/cpb.2005.8.187
Hurtado Guevara, R. F., & Pinargote Pinargote, H. M. (2021). Factores limitantes del crecimiento económico en las PYMES de Quinindé. Journal of Economic and Social Science Research, 1(1). https://doi.org/10.55813/gaea/jessr/v1/n1/20
Jayaraman, A., O’Brien, M. K., Madhavan, S., Mummidisetty, C. K., Roth, H. R., Hohl, K., Tapp, A., Brennan, K., Kocherginsky, M., Williams, K. J., Takahashi, H., & Rymer, W. Z. (2019). Stride management assist exoskeleton vs functional gait training in stroke: A randomized trial. Neurology, 92(3). https://doi.org/10.1212/wnl.0000000000006782
Kazerooni, H., Steger, R., & Huang, L. (2006). Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX). The International Journal of Robotics Research, 25(5–6), 561–573. https://doi.org/10.1177/0278364906065505
Koenig, A., Omlin, X., Bergmann, J., Zimmerli, L., Bolliger, M., Müller, F., & Riener, R. (2011). Controlling patient participation during robot-assisted gait training. Journal of Neuroengineering and Rehabilitation, 8(1), 14. https://doi.org/10.1186/1743-0003-8-14
Kolakowsky-Hayner, S. A. (2013). Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury. Journal of spine. https://doi.org/10.4172/2165-7939.s4-003
Kozlowski, A., Bryce, T., & Dijkers, M. (2015). Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Topics in Spinal Cord Injury Rehabilitation, 21(2), 110–121. https://doi.org/10.1310/sci2102-110
Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. The Cochrane Library, 2018(1). https://doi.org/10.1002/14651858.cd008349.pub4
Lefmann, S., Russo, R., & Hillier, S. (2017). The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review. Journal of Neuroengineering and Rehabilitation, 14(1). https://doi.org/10.1186/s12984-016-0214-x
Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., Ringer, R. J., Wagner, T. H., Krebs, H. I., Volpe, B. T., Bever, C. T., Jr, Bravata, D. M., Duncan, P. W., Corn, B. H., Maffucci, A. D., Nadeau, S. E., Conroy, S. S., Powell, J. M., Huang, G. D., & Peduzzi, P. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. The New England Journal of Medicine, 362(19), 1772–1783. https://doi.org/10.1056/nejmoa0911341
López-Pérez, P. J., Quiñónez-Cabeza, B. M., Preciado-Ramírez, J. D., Salgado-Ortiz, P. J., Armijos-Sánchez, E. S., & Proaño-González, E. A. (2023). NIIF FULL: Una guía práctica para su aplicación. In NIIF FULL: Una guía práctica para su aplicación. https://doi.org/10.55813/egaea.l.2022.22
Matjačić, Z., Zadravec, M., & Olenšek, A. (2018). Feasibility of robot-based perturbed-balance training during treadmill walking in a high-functioning chronic stroke subject: a case-control study. Journal of Neuroengineering and Rehabilitation, 15(1). https://doi.org/10.1186/s12984-018-0373-z
Monaco, V., Tropea, P., Aprigliano, F., Martelli, D., Parri, A., Cortese, M., Molino-Lova, R., Vitiello, N., & Micera, S. (2017). An ecologically-controlled exoskeleton can improve balance recovery after slippage. Scientific Reports, 7(1). https://doi.org/10.1038/srep46721
Norouzi-Gheidari, N., Archambault, P. S., & Fung, J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development, 49(4), 479. https://doi.org/10.1682/jrrd.2010.10.0210
Núñez-Liberio, R. V., Suarez-Núñez, M. V., Navarrete-Zambrano, C. M., Ruiz-López, S. E., & Almenaba-Guerrero, P. Y. (2023). Sistema de Costos por Órdenes de Producción para PYMES. In Sistema de Costos por Órdenes de Producción para PYMES. https://doi.org/10.55813/egaea.l.2022.26
Organización Mundial de la Salud. (2011). Informe mundial sobre la discapacidad 2011. Organización Mundial de la Salud; World Health Organization. https://www.who.int/es/publications/i/item/9789241564182
Proaño-González, E. A., Escobar Quiña, J. D., Gómez Pacheco, M. I., & Cruz Campos, D. C. (2022). La ética publicitaria de las empresas ecuatorianas como responsabilidad social de los grupos de interés. In Resultados Científicos de la Investigación Multidisciplinaria desde la Perspectiva Ética. https://doi.org/10.55813/egaea.cl.2022.12
Rivadeneira-Moreira, J. C., Cheve Chiluisa, A. A., Kuffo Cevallos, K. J., & Solórzano Vélez, H. V. (2022). La ética en la publicidad de las empresas multinacionales. In Análisis Científico de la Ética desde la Perspectiva Multidisciplinaria. https://doi.org/10.55813/egaea.cl.2022.9
Ruiz Zambrano, L. G., Benavidez Mendoza, M. G., Cobeña Infante, N. N., & Cheme Baque, M. G. (2022). La ética del cuidado dentro de las organizaciones sociales. In Resultados Científicos de la Investigación Multidisciplinaria desde la Perspectiva Ética. https://doi.org/10.55813/egaea.cl.2022.14
Sawicki, G. S., Beck, O. N., Kang, I., & Young, A. J. (2020). The exoskeleton expansion: improving walking and running economy. Journal of Neuroengineering and Rehabilitation, 17(1). https://doi.org/10.1186/s12984-020-00663-9
Sinha, R., Slavin, M. D., Kisala, P. A., Ni, P., Tulsky, D. S., & Jette, A. M. (2015). Functional ability level development and validation: Providing clinical meaning for spinal cord injury functional index scores. Archives of Physical Medicine and Rehabilitation, 96(8), 1448–1457. https://doi.org/10.1016/j.apmr.2014.11.008
Sions, J. M., Tyrell, C. M., Knarr, B. A., Jancosko, A., & Binder-Macleod, S. A. (2012). Age- and stroke-related skeletal muscle changes: A review for the geriatric clinician. Journal of Geriatric Physical Therapy (2001), 35(3), 155–161. https://doi.org/10.1519/jpt.0b013e318236db92
Wall, A., Borg, J., & Palmcrantz, S. (2015). Clinical application of the Hybrid Assistive Limb (HAL) for gait training—a systematic review. Frontiers in systems neuroscience, 9. https://doi.org/10.3389/fnsys.2015.00048
Young, A. J., & Ferris, D. P. (2017). State of the art and future directions for lower limb robotic exoskeletons. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, 25(2), 171–182. https://doi.org/10.1109/tnsre.2016.2521160
Zeilig, G., Weingarden, H., Zwecker, M., Dudkiewicz, I., Bloch, A., & Esquenazi, A. (2012). Safety and tolerance of the ReWalkTMexoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. The Journal of Spinal Cord Medicine, 35(2), 96–101. https://doi.org/10.1179/2045772312y.0000000003